Respuesta :

Answer:

Probability=2/5

Step-by-step explanation:

Let the line segment be AB of uniform length and x is distance

so

[tex]P(\frac{min(x,L-x)}{max(x,L-x)} )<1/4[/tex]

Case 1 min(x,L-x) then

[tex]=\frac{x}{L-x}\leq  1/4\\x<L/5[/tex]

Case 2 min(x,L-x)=L-x then

[tex]=\frac{L-x}{x}<1/4\\ x>\frac{4L}{5}\\[/tex]

So Probability

[tex]P=\int\limits^{L/5}_0 {f(x)} \, dx+\int\limits^{L}_{4L/5} {f(x)} \, dx\\  P=\int\limits^{L/5}_0 {\frac{1}{L} } \, dx+\int\limits^L_{4L/5} {\frac{1}{L} } \, dx\\  P=\frac{1}{L}(\frac{L}{5} -0+L-\frac{4L}{5} )\\ P=\frac{1}{L} (2L/5)\\P=\frac{2}{5}[/tex]