Answer:
A) [tex]\omega_f=17.503\ rad.s^{-1}[/tex]
B) [tex]t=55.6822\ s[/tex]
C) [tex]\theta=1312\ rad[/tex]
Explanation:
Given:
Using equation of motion:
[tex]\theta=\omega_i.t+\frac{1}{2} \alpha.t^2[/tex]
[tex]360\pi=15\pi\times 35+\frac{1}{2} \times \alpha\times35^2[/tex]
[tex]\alpha=-0.8463\ rad.s^{-2}[/tex]
Negative sign denotes deceleration.
A)
Now using the equation:
[tex]\omega_f=\omega_i+\alpha.t[/tex]
[tex]\omega_f=15\pi-0.8463\times 35[/tex]
[tex]\omega_f=17.503\ rad.s^{-1}[/tex] is the angular velocity of the flywheel when the power comes back.
B)
Here:
[tex]\omega_f=0\ rad.s^{-1}[/tex]
Now using the equation:
[tex]\omega_f=\omega_i+\alpha.t[/tex]
[tex]0=15\pi-0.8463\times t[/tex]
[tex]t=55.6822\ s[/tex] is the time after which the flywheel stops.
C)
Using the equation of motion:
[tex]\theta=\omega_i.t+\frac{1}{2} \alpha.t^2[/tex]
[tex]\theta=15\pi\times 55.68225-0.5\times 0.8463\times 55.68225^2[/tex]
[tex]\theta=1312\ rad[/tex] revolutions are made before stopping.