Respuesta :

Answer:X=i and ±[tex]\sqrt{\frac{7}{9} }[/tex]

Step-by-step explanation:

Answer : The solutions of the equation are, [tex]x=\pm i\sqrt{\frac{7}{9}}[/tex] and [tex]x=\pm 1[/tex]

Step-by-step explanation :

As we are given that the expression of equation as:

[tex]9x^4-2x^2-7=0[/tex]

Let [tex]x^2=u[/tex], we get:

[tex]9u^2-2u-7=0[/tex]

Now split this expression by middle term splitting method.

[tex]9u^2-9u+7u-7=0[/tex]

[tex]9u(u-1)+7(u-1)=0[/tex]

[tex](9u+7)(u-1)=0[/tex]

(9u+7) = 0 and (u-1) = 0

[tex]u=\frac{-7}{9}[/tex] and u = 1

As,

[tex]x^2=u[/tex]

Thus, the value of 'x' for [tex]u=\frac{-7}{9}[/tex] is:

[tex]x^2=u=\frac{-7}{9}[/tex]

[tex]x^2=\frac{-7}{9}[/tex]

[tex]x=\sqrt{\frac{-7}{9}}[/tex]        [tex](i^2=-1)[/tex]

[tex]x=\pm i\sqrt{\frac{7}{9}}[/tex]

The value of 'x' for [tex]u=1[/tex] is:

[tex]x^2=u=1[/tex]

[tex]x^2=1[/tex]

[tex]x=\pm 1[/tex]

Therefore, the solutions of the equation are, [tex]x=\pm i\sqrt{\frac{7}{9}}[/tex] and [tex]x=\pm 1[/tex]