Answer:
The translation rule is [tex](x,y)\to(x+5,y-3)[/tex]
[tex]B'=(12,5)[/tex]
[tex]C'=(-5,-12)[/tex]
Step-by-step explanation:
The vertices of ∆ABC are A(-3,5),B(7,8), and C(4,-9).
The coordinates of A' are (2,2)
Let the translation vector be [tex]\binom{a}{b}[/tex]
Then we have [tex]\binom{-3}{5}+\binom{a}{b}=\binom{2}{2}[/tex]
[tex]\implies \binom{-3+a}{5+b}=\binom{2}{2}[/tex]
[tex]\implies -3+a=2\:,5+b=2[/tex]
[tex]\implies a=2+3\:,b=2-5[/tex]
[tex]\implies a=5\:,b=-3[/tex]
The translation rule is [tex](x,y)\to(x+5,y-3)[/tex]
Therefore:
[tex]B(7,8)\to(7+5,8-3)\to B'(12,5)[/tex]
[tex]C(4,-9)\to(4+5,-9-3)\to C'(-5,-12)[/tex]