A sequence of translations maps ∆ABC to ∆A'B'C'. The vertices of ∆ABC are A(-3,5),B(7,8), and C(4,-9). The coordinates of A' are (2,2). What are the coordinates for B' and C'? Also, identify the translation rule used

Respuesta :

Answer:

The translation rule is [tex](x,y)\to(x+5,y-3)[/tex]

[tex]B'=(12,5)[/tex]

[tex]C'=(-5,-12)[/tex]

Step-by-step explanation:

The vertices of ∆ABC are A(-3,5),B(7,8), and C(4,-9).

The coordinates of A' are (2,2)

Let the translation vector be [tex]\binom{a}{b}[/tex]

Then we have [tex]\binom{-3}{5}+\binom{a}{b}=\binom{2}{2}[/tex]

[tex]\implies \binom{-3+a}{5+b}=\binom{2}{2}[/tex]

[tex]\implies -3+a=2\:,5+b=2[/tex]

[tex]\implies a=2+3\:,b=2-5[/tex]

[tex]\implies a=5\:,b=-3[/tex]

The translation rule is [tex](x,y)\to(x+5,y-3)[/tex]

Therefore:

[tex]B(7,8)\to(7+5,8-3)\to B'(12,5)[/tex]

[tex]C(4,-9)\to(4+5,-9-3)\to C'(-5,-12)[/tex]