Respuesta :
Answer:
(a) F(gravitational force)=33.7 N
(b) W (Weight)=32.8 N
Explanation:
Given Data
a=11.2 m/s²
m (Neptune mass)=1.02*10²⁶ kg
r=2.45*10⁴ km
t=16 h
(a) Gravitational Force=? when m₁=3.0 kg
(b) Weight=?
Solution
For part (a) gravitational force
[tex]F=\frac{Gmm}{R^{2} }\\ G=6.67*10^{-11}\frac{Nm^{2} }{kg^{2} }\\ F=\frac{6.67*10^{-11}*1.02*10^{26}*3.00 }{(2.46*10^{4} *1000)^{2} }\\ F=33.7N[/tex]
For (b) part Weight
[tex]W=F-\frac{mv^{2} }{R}\\ as\\T=\frac{2*\pi *r}{V}\\ V=\frac{2*\pi *r}{T}\\ V=\frac{2*(3.14)*(2.46*10^{4} *1000)}{16*3600} \\V=2683 \frac{m}{s}[/tex]
V=2683 m/s
[tex]W=33.7-\frac{3*(2683)^{2} }{2.46*10^{4}*1000 }\\ W=32.8N[/tex]
The gravitational force on the object at Neptune's north pole is equal to 33.7N. The weight of this object is equal to 32.8N.
How can we arrive at this result?
- First, we must find the gravitational force.
This will be done with the equation [tex]F=\frac{Gmm}{R^2}[/tex]
For "G" we will adopt the value of [tex]6.67*10^-^1^1\frac{Nm^2}{Kg^2}[/tex]
After that, we can use the equation as follows:
[tex]F=\frac{6.67*10^-^1^1*1.02*10^2^6*3}{(2.46*10^4*1000)^2} \\F=33.7N[/tex]
- With the value of the gravitational force it is possible to find the apparent weight of the object through the equation: [tex]W= F-\frac{mv^2}{R}[/tex]
However, to use this equation, we must first find the value of velocity. This will be done with the equation: [tex]v= \frac{2*\pi*r }{t}[/tex]
Solving the velocity equation we get:
[tex]v= \frac{2*\pi*2.46*10^4*1000}{16*3600} \\v= 2683 \frac{m}{s}[/tex]
- With this value, we can calculate the apparent weight equation.
[tex]W=33.7-\frac{3*2683^2}{2.46*10^4*1000} = 32.8N[/tex]
More information about weight is in the link:
https://brainly.com/question/23312072