Respuesta :

Solving [tex]\frac{4-5i}{2+3i}[/tex] we get [tex]-\frac{7}{13}-\frac{22i}{13}[/tex]

Option A is correct.

Step-by-step explanation:

We need to find the result of [tex]\frac{4-5i}{2+3i}[/tex]

We need to remove i from the denominator. For removing i Multiplying and dividing by 2-3i:

[tex]\frac{4-5i}{2+3i}*\frac{2-3i}{2-3i}[/tex]

Solving:

[tex]=\frac{4-5i*2-3i}{2+3i*2-3i}\\=\frac{4(2-3i)-5i*(2-3i)}{(2)^2-(3i)^2}\\=\frac{8-12i-10i+15i^2)}{4-9i^2}\\We\,\,i^2=-1\\=\frac{8-12i-10i+15(-1))}{4-9(-1)}\\=\frac{8-12i-10i-15}{4+9}\\=\frac{8-15-12i-10i}{13}\\=\frac{-7-22i}{13}\\=-\frac{7}{13}-\frac{22i}{13}[/tex]

So, solving [tex]\frac{4-5i}{2+3i}[/tex] we get [tex]-\frac{7}{13}-\frac{22i}{13}[/tex]

Option A is correct.

Keywords: Complex numbers

Learn more about Complex numbers at:

  • brainly.com/question/10736268
  • brainly.com/question/4678474

#learnwithBrainly