Calculate the lattice energy of magnesium sulfide from the data given below. Mg(s) → Mg(g) ΔH° = 148 kJ/mol Mg(g) → Mg2+(g) + 2e– ΔH° = 2186 kJ/mol S8(s) → 8S(g) ΔH° = 2232 kJ/mol S(g) + 2e– → S2–(g) ΔH° = 450 kJ/mol 8Mg(s) + S8(s) → 8MgS(s) ΔH° = –2744 kJ/mol MgS(s)→Mg2+(g) + S2–(g) ΔH°lattice = ?

Respuesta :

Answer:

The lattice energy of magnesium sulfide is -3,406 kJ/mol.

Explanation:

[tex] Mg(s)\rightarrow Mg(g) ,\Delta H^o_{1} = 148 kJ/mol[/tex]..[1]

[tex]Mg(g) \rightarrow Mg^{2+}(g) + 2e^- ,\Delta H^o_{2}  = 2,186 kJ/mol [/tex]..[2]

[tex]S_8(s) \rightarrow 8S(g) ,\Delta H^o_{3} = 2,232 kJ/mol [/tex]..[3]

[tex]S(g) + 2e^- \rightarrow S^{2-}(g),\Delta H^o_{4}  = 450 kJ/mol [/tex]..[4]

[tex]8Mg(s) + S_8(s) \rightarrow 8MgS(s),\Delta H^o_{5} = -2,744 kJ/mol [/tex]..[5]

[tex]MgS(s)\rightarrow Mg^{2+}(g) + S^{2-}(g),\Delta H^o_{lattice}=?[/tex]..[6]

By using Hess's law:

[tex][6]=\frac{1}{8}\times [5]-[1]-[2]-\frac{1}{8}\times [3]-[4][/tex]

[tex]\Delta H^o_{lattice} =[/tex]

[tex]=\frac{1}{8}\times \Delta H^o_{5}-\Delta H^o_{1}-\Delta H^o_{2}-\frac{1}{8}\times \Delta H^o_{3}- \Delta H^o_{4}[/tex]

[tex]\Delta H^o_{lattice}=\frac{1}{8}\times (-2,744 kJ/mol)-148 kJ/mol-2,186 kJ/mol-\frac{1}{8}\times 2,232 kJ/mol-450 kJ/mol[/tex]

[tex]\Delta H^o_{lattice}=-3406 kJ/mol[/tex]

The lattice energy of magnesium sulfide is -3,406 kJ/mol.