Respuesta :
Answer:
[tex]Sin (x) =\frac { 1} { Cos (x) - 1}[/tex]
Step-by-step explanation:
Here, given :
sin 2 x - 2 sin x = 2 .... (1)
Now, by TRIGONOMETRIC IDENTITY:
Sin 2Ф = 2 SinФ CosФ
⇒ sin 2 x = 2 sin x cos x
Putting back the value in (1), we get:
sin 2 x - 2 sin x = 2 ⇒ (2 sin x cos x) - 2 sin x = 2
or, 2( sin x cos x - sin x) = 2
or, sin x cos x - sin x = 1
or, (sin x) ( cosx - 1) = 1
⇒ Sin x = 1 / ( Cos x - 1)
Hence, [tex]Sin (x) =\frac { 1} { Cos (x) - 1}[/tex]
Answer:
sinx = -1
Step-by-step explanation:
This question is from trigonometry.
Given ,
sin2x - 2sinx = 2 ----------(1)
But sin2x = [tex]2sinx \times cosx[/tex] ----------(2)
Substituting (2) in (1)
[tex]2sinx \times cosx[/tex] -2sinx = 2
2sinx(cosx - 1) = 2
Dividing LHS and RHS by 2 ,
sinx(cosx-1) = 1 ------------(3)
-1 ≤ sinx , cosx ≤ 1
(3) is possible only when
sinx = -1 and cosx = 0
This happens when sinx =270°