Answer:
a. v = 4.68 m/s²
b. T₂ = 141.12 N
c. v = 15.02 m/s²
Explanation:
Given:
M= 1.4 kg, L = 20.8m, mi=13 kg
a.
Using the equations of kinetic energy and the spring potential
Uk = Ek
¹/₂ * T * d = ¹/₂ * m * v ²
T₁ = M * g = 1.4 kg * 9.8 m/s² = 13.72 N
T₂ = (M + mi) * g = (1.4 kg + 13 kg)* 9.8 m/s² = 141.12 N
a. the speed at the bottom
v = √[(T * d )/ m] = √ 13.72 N * 20.8 m / 13 kg
v = 4.68 m/s²
b. the tension of the chain
T₂ = (M + mi) * g = (1.4 kg + 13 kg)* 9.8 m/s² = 141.12 N
c. the speed at the top of the spring
v = √[(T * d )/ m] = √ 141.12 N * 20.8 m / 13 kg
v = 15.02 m/s²