A door 1 m wide, of mass 15 kg, is hinged at one side so that it can rotate without friction about a vertical axis. It is unlatched. A police officer fires a bullet with a mass of 10 g and a speed of 400 m/s into the exact center of the door, in a direction perpendicular to the plane of the door. Find the angular speed of the door just after the collision.

Respuesta :

Answer:

[tex]\omega_f = 0.4\ rad/s[/tex]

Explanation:

given,

door width = 1 m

mass of = 15 Kg

Mass of bullet = 0.01 Kg

speed of the bullet = 400 m/s

[tex]I_{total} =I_{door} + I_{bullet}[/tex]

[tex]I_{total} =\dfrac{1}{3}MW^2 + m(\dfrac{W}{2})^2[/tex]

a) from conservation of angular momentum  

[tex]L_i = L_f[/tex]  

[tex] mv\dfrac{W}{2} = I_{total}\omega_f[/tex]  

[tex] mv\dfrac{W}{2}= \dfrac{1}{3}MW^2 + m(\dfrac{W}{2})^2)\omega_f[/tex]

[tex]\omega_f= \dfrac{mv\dfrac{W}{2}}{\dfrac{1}{3}MW^2 + m(\dfrac{W}{2})^2}[/tex]

[tex]\omega_f= \dfrac{\dfrac{mv}{2}}{\dfrac{MW }{3}+(\dfrac{mW}{4})}[/tex]

[tex]\omega_f= \dfrac{\dfrac{0.01\times 400}{2}}{\dfrac{15\times 1 }{3}+(\dfrac{0.01\times 1}{4})}[/tex]

[tex]\omega_f = 0.4\ rad/s[/tex]