Respuesta :

Answer:

The answer is Hence Proved

Step-by-step explanation:

       Given that CB║ED ,  CB ≅ ED

       To prove Δ CBF ≅ Δ EDF

  •       CB ≅ ED   ( Given )

        This means that the length of CB is equal to ED

        As CB║ED The following conditions satisfies when a transversal cut

        two parallel lines

  •    ∠ EDF = ∠ FBC   ( Alternate interior points )
  •    ∠ DEF = ∠ FCB   ( Alternate interior points )

       ∴ Δ CBF ≅ Δ EDF    ( By ASA criterion)

        The Δ CBF is congruent to Δ EDF By ASA criterion .

       Hence proved