Respuesta :

Answer:

The following Triangles are Right Triangles:

1.  Δ ABC Where AB = 76 in, BC = 357 in, and AC = 365 in.

2. Δ MIT Where MI = 123 cm, IT = 836 cm, and MT = 845 cm.

3. Δ MEL Where ME = 20 ft, EL = 99 ft, and ML = 101 ft.

Step-by-step explanation:

For a Triangle to be a Right Triangle it must Satisfy Pythagoras theorem.

i.e.

[tex](\textrm{Hypotenuse})^{2} = (\textrm{Shorter leg})^{2}+(\textrm{Longer leg})^{2}[/tex]

For Δ ABC Where AB = 76 in, BC = 357 in, and AC = 365 in.

AC² = 365² = 133225

AB² + BC² = 76² + 357² = 1333225

∴  AC² = AB² + BC²

Hence Δ ABC a Right Triangle.

For Δ MIT Where MI = 123 cm, IT = 836 cm, and MT = 845 cm.

MT² = 845² = 71405

MI² + IT² = 123² + 836² = 714025

∴ MT² = MI² + IT²

Hence Δ MIT a Right Triangle.

For  Δ MEL Where ME = 20 ft, EL = 99 ft, and ML = 101 ft.

ML² = 101² = 10201

ME² + EL² = 20² + 99² = 10201

∴ ML² = ME² + EL²

Hence Δ MEL a Right Triangle.