Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.)f(x) = 9ex + 4 sec2x

Respuesta :

Answer:

[tex]\int\ {f(x)} \, dx = 9e^x + 2ln(sec(2x) + tan(2x)) + C[/tex]

Step-by-step explanation:

think of the function having two parts, [tex]9e^x[/tex] and [tex]4sec(2x)[/tex]

and integrate them separately.

  • First integrate [tex]9e^x[/tex]

[tex]\int\ {9e^x} \, dx \\[/tex]

since 9 is a constant you

[tex]9\int\ {e^x} \, dx\\ [/tex]

[tex]9e^x[/tex]

  • Next integrate [tex]4sec(2x)[/tex]

[tex]\int\ {4sec(2x)} \, dx \\4\int\ {sec(2x)} \, dx \\[/tex]

we can use u-substitution [tex]u = 2x[/tex] and [tex]du =2dx[/tex]

[tex]4\int\ {sec(u)} \, \frac{du}{2} \\2\int\ {sec(u)} \, du\\[/tex]

think of it as only integrating sec(x)

[tex]2(ln(sec(u) + tan(u)))\\2(ln(sec(2x) + tan(2x)))\\[/tex]

  • Now combine the two answers and include the constant of integration (+C)

Answer:: [tex]9e^x + 2ln(sec(2x) + tan(2x)) + C\\[/tex]