Find the volume of the solid S whose base is the triangular region in the x y-plane with vertices (0,0), (1,0), and (0,1) and such that cross-sections perpendicular to the x-axis are squares.

Respuesta :

Answer:

Volume of Solid is=1/3 unit³

Step-by-step explanation:

Given Data

Vertices (0,0),(1,0) and (0,1)

Volume=?

Solution

[tex]Volume=\int\limits^a_b {Area} \, dy\\V=\int\limits^a_b {base^{2} } \, dy\\ V=\int\limits^1_0 {y^{2} } \, dy\\ V=1/3[/tex]

if we solve it with respect to x

[tex]Volume=\int\limits^a_b {base^{2} } \, dy\\ V=\int\limits^1_0 {x^{2} } \, dy\\ as\\y=-x+1\\-x=y-1\\x=1-y\\V=\int\limits^1_0 {(1-y)^{2} } \, dy\\ V=\int\limits^1_0 {(1-2y+y^{2} )} \, dy\\ V=1/3unit^{3}[/tex]