Answer:
Volume of Solid is=1/3 unit³
Step-by-step explanation:
Given Data
Vertices (0,0),(1,0) and (0,1)
Volume=?
Solution
[tex]Volume=\int\limits^a_b {Area} \, dy\\V=\int\limits^a_b {base^{2} } \, dy\\ V=\int\limits^1_0 {y^{2} } \, dy\\ V=1/3[/tex]
if we solve it with respect to x
[tex]Volume=\int\limits^a_b {base^{2} } \, dy\\ V=\int\limits^1_0 {x^{2} } \, dy\\ as\\y=-x+1\\-x=y-1\\x=1-y\\V=\int\limits^1_0 {(1-y)^{2} } \, dy\\ V=\int\limits^1_0 {(1-2y+y^{2} )} \, dy\\ V=1/3unit^{3}[/tex]