Respuesta :

The solution to the system is (8, -12).

Step-by-step explanation:

Given equations are;

1/4x-1/2y=8      Eqn 1

1/2x+3/4y=-5    Eqn 2

Multiplying both equations by 4

[tex]4(\frac{1}{4}x-\frac{1}{2}y=8),\ \ \ \ 4(\frac{1}{2}x+\frac{3}{4}y=-5)\\4*\frac{1}{4}x-\frac{1}{2}y*4=8*4, \ \ \ \ 4*\frac{1}{2}x+\frac{3}{4}y*4=-5*4\\x-2y=32 \ \ \ Eqn \ 3\ , \ \ \ \ 2x+3y=-20\ \ \ \ Eqn\ 4[/tex]

Multiplying Eqn 3 by -2

[tex]-2(x-2y=32)\\-2x+4y=-64\ \ \ \ Eqn\ 5[/tex]

Adding Eqn 4 and Eqn 5

[tex](2x+3y)+(-2x+4y)=-20+(-64)\\2x+3y-2x+4y=-20-64\\7y=-84[/tex]

Dividing both sides by 7

[tex]\frac{7y}{7}=\frac{-84}{7}\\y=-12[/tex]

Putting y=-12 in Eqn 3

[tex]x-2(-12)=32\\x+24=32\\x=32-24\\x=8[/tex]

The solution to the system is (8, -12).

Keywords: linear equations, addition

Learn more about linear equations at:

  • brainly.com/question/1648434
  • brainly.com/question/1648978

#LearnwithBrainly