Respuesta :

Answer:

Work done = 1.69 lb-ft.

Step-by-step explanation:

Work required to stretch a spring 2 feet beyond its natural length W = 12 ft-lb

By Hook's law

[tex]W=\int\limits^2_0 {kx} \, dx[/tex]

[tex]12=k[\frac{x^{2} }{2}]^{2}_0[/tex]

12 = [tex]\frac{k}{2}(2)^{2}[/tex]

12 = 2k

k = 6 lb per feet

Now we have to find the work done to stretch the spring 9 inch or [tex]\frac{9}{12}[/tex] feet beyond its natural length.

We again use the Hook's law.

[tex]W=\int\limits^\frac{3}{4} _0  {kx} \, dx[/tex]

[tex]W=k\int\limits^\frac{3}{4} _0  {x} \, dx[/tex]

[tex]W=6\int\limits^\frac{3}{4} _0  {x} \, dx[/tex]

[tex]W=6[\frac{x^{2} }{2}]^{\frac{3}{4}}_{0}[/tex]

[tex]W=3(\frac{3}{4})^{2}[/tex]

[tex]W=\frac{27}{16}[/tex] lb-ft

Therefore, work done to stretch the spring 9 in. beyond the its natural length will be 1.69 lb-feet.

Otras preguntas