The coordinates of the vertices of a polygon are (-2, 1). (-3, 3), (-1, 5), (2, 4), and (2, 1). What is the perimeter of the polygon to the nearest tenth of a unit.

Do not label your answer. Answer with a number only.

Respuesta :

Answer:

[tex]15.2\ units[/tex]

Step-by-step explanation:

step 1

Plot the vertices of the polygon to better understand the problem

we have

[tex]A(-2, 1). B(-3, 3), C(-1, 5), D(2, 4),E(2, 1)[/tex]

using a graphing tool

The polygon is a pentagon (the number of sides is 5)

see the attached figure

The perimeter is equal to

[tex]P=AB+BC+CD+DE+AE[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 2

Find the distance AB

[tex]A(-2, 1). B(-3, 3)[/tex]

substitute in the formula

[tex]d=\sqrt{(3-1)^{2}+(-3+2)^{2}}[/tex]

[tex]d=\sqrt{(2)^{2}+(-1)^{2}}[/tex]

[tex]d_A_B=\sqrt{5}=2.24\ units[/tex]

step 3

Find the distance BC

[tex]B(-3, 3), C(-1, 5)[/tex]

substitute in the formula

[tex]d=\sqrt{(5-3)^{2}+(-1+3)^{2}}[/tex]

[tex]d=\sqrt{(2)^{2}+(2)^{2}}[/tex]

[tex]d_B_C=\sqrt{8}=2.83\ units[/tex]

step 4

Find the distance CD

[tex]C(-1, 5), D(2, 4)[/tex]

substitute in the formula

[tex]d=\sqrt{(4-5)^{2}+(2+1)^{2}}[/tex]

[tex]d=\sqrt{(-1)^{2}+(3)^{2}}[/tex]

[tex]d_C_D=\sqrt{10}=3.16\ units[/tex]

step 5

Find the distance DE

[tex]D(2, 4),E(2, 1)[/tex]

substitute in the formula

[tex]d=\sqrt{(1-4)^{2}+(2-2)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(0)^{2}}[/tex]

[tex]d_D_E=\sqrt{9}\ units[/tex]

[tex]d_D_E=3\ units[/tex]

step 6

Find the distance AE

[tex]A(-2, 1).E(2, 1)[/tex]

substitute in the formula

[tex]d=\sqrt{(1-1)^{2}+(2+2)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(4)^{2}}[/tex]

[tex]d_A_E=\sqrt{16}\ units[/tex]

[tex]d_A_E=4\ units[/tex]

step 7

Find the perimeter

[tex]P=AB+BC+CD+DE+AE[/tex]

substitute the values

[tex]P=2.24+2.83+3.16+3+4=15.23\ units[/tex]

Round to the nearest tenth of a unit

[tex]P=15.2\ units[/tex]

Ver imagen calculista