[tex]\bf ~\hspace{7em}\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} ~\hspace{4.5em} a^n\implies \cfrac{1}{a^{-n}} ~\hspace{4.5em} \cfrac{a^n}{a^m}\implies a^na^{-m}\implies a^{n-m} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{y^4z^3}{y^6z^2}\implies \cfrac{z^3z^{-2}}{y^6 y^{-4}}\implies \cfrac{z^{3-2}}{y^{6-4}}\implies \cfrac{z}{y^2}[/tex]
Answer:
z^5/y^2
Step-by-step explanation:
Simplify: z^3/y^6
Equation at the end of step 1 :
((y4) • z^3/y^6 ) • z^2
Multiplying exponential expressions :
z^3 multiplied by z^2 = z^(3 + 2) = z^5
And you will have your answer