Respuesta :

Answer:

x = [tex]\frac{log 16}{5timeslog5.21}[/tex]

Step-by-step explanation:

[tex]5.21^{5timesx} = 16[/tex]

log [tex]5.21^{5timesx} = log 16[/tex]

[tex]5timesx[/tex] log 5.21 = log 16

[tex]5timesx[/tex] =[tex]\frac{1}{5} times    [tex]log_{5.21}[/tex] 16[/tex]

x = [tex]\frac{log 16}{5timeslog5.21}[/tex]

Answer:

[tex]x=\frac{log 3.2}{5*log21}[/tex]

Step-by-step explanation:

In this type of question, first we have to make sure that the variable that we need to find comes out of the exponential part by applying logarithms

Given, [tex]5[/tex]·[tex]21^{5x}=16[/tex]

Step1: Dividing by 5 on both sides we get, [tex]21^{5x}=\frac{16}{5}[/tex]

                                                                   ⇒[tex]21^{5x}=3.2[/tex]

Step2: Applying logarithm on both sides, [tex]5x*log21=log3.2[/tex]

Step3: Divide by [tex]5[/tex]㏒[tex]21[/tex] , [tex]x=\frac{log 3.2}{5*log21}[/tex]

therefore, [tex]5[/tex]·[tex]21^{5x}=16[/tex]

⇒[tex]21^{5x}=3.2[/tex]

⇒[tex]5x*log21=log3.2[/tex]

[tex]x=\frac{log 3.2}{5*log21}[/tex]