A rock contains 0.275 mg of lead-206 for each milligram of uranium-238. The for the decay of uranium-238 to lead-206 is 4.5 x 10 9 yr. The rock was formed __________ yr ago.

Respuesta :

Answer:

The rock is formed [tex]1.7\times 10^9[/tex] years ago.

Explanation:

Given that:

Half life = [tex]4.5\times 10^9[/tex] years

[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]

[tex]k=\frac{ln\ 2}{4.5\times 10^9}\ years^{-1}[/tex]

The rate constant, k = [tex]1.54\times 10^{-10}[/tex] years⁻¹

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the final concentration= 0.275 mg

[tex][A_0][/tex] is the initial concentration = 1 mg

Let [tex][A_t][/tex] = 1 mg

A rock contains 0.275 mg of lead-206 for each milligram of uranium-238. So,

[tex][A_0][/tex] = [tex]1+\frac{238}{206}\times 0.275[/tex] mg = 1.297 mg

Time = ?

So,  

[tex]\frac{1}{1.297}=e^{-1.54\times 10^{-10}\times t}[/tex]

[tex]\ln \left(\frac{1}{1.297}\right)=-1.54\times \:10^{-10}t[/tex]

[tex]t=\frac{10^{10}\ln \left(1.297\right)}{1.54}[/tex]

[tex]t=1.7\times 10^9[/tex] years

The rock is formed [tex]1.7\times 10^9[/tex] years ago.