Respuesta :
Answer:
Rate of reaction =[tex]1.35mol.dm^{-3}.s^{-1}[/tex]
Rate of consumption of A = [tex]2.7mol.dm^{-3}.s^{-1}[/tex]
Rate of consumption of B = [tex]1.35mol.dm^{-3}.s^{-1}[/tex]
Rate of formation of D = [tex]4.15mol.dm^{-3}.s^{-1}[/tex]
Explanation:
According to laws of mass action for the given reaction,
[tex]Rate= -\frac{1}{2}\frac{\Delta [A]}{\Delta t}=-\frac{\Delta [B]}{\Delta t}=\frac{1}{2}\frac{\Delta [C]}{\Delta t}=\frac{1}{3}\frac{\Delta [D]}{\Delta t}[/tex]
where, [tex]-\frac{\Delta [A]}{\Delta t}[/tex] is rate of consumption of A, [tex]-\frac{\Delta [B]}{\Delta t}[/tex] is rate of consumption of B, [tex]\frac{\Delta [C]}{\Delta t}[/tex] is rate of formation of C and [tex]\frac{\Delta [D]}{\Delta t}[/tex] is rate of formation of D
Here [tex]\frac{\Delta [C]}{\Delta t}=2.7mol.dm^{-3}.s^{-1}[/tex]
So, Rate of reaction = [tex](\frac{1}{2}\times 2.7mol.dm^{-3}.s^{-1})=1.35mol.dm^{-3}.s^{-1}[/tex]
Rate of formation of D = [tex](\frac{3}{2}\times \frac{\Delta [C]}{\Delta t})=(\frac{3}{2}\times 2.7mol.dm^{-3}.s^{-1})=4.15mol.dm^{-3}.s^{-1}[/tex]
Rate of consumption of A = [tex](\frac{2}{2}\times \frac{\Delta [C]}{\Delta t})=(\frac{2}{2}\times 2.7mol.dm^{-3}.s^{-1})=2.7mol.dm^{-3}.s^{-1}[/tex]
Rate of consumption of B = [tex](\frac{1}{2}\times \frac{\Delta [C]}{\Delta t})=(\frac{1}{2}\times 2.7mol.dm^{-3}.s^{-1})=1.35mol.dm^{-3}.s^{-1}[/tex]