Let X ~ N(0, 1) and Y = eX. Y is called a log-normal random variable.
(a) Find the probability density function of Y .
(b) Find the nth moment E(Yn) of Y .
Hint. Do not compute the moment generating function of Y . Instead relate
the nth moment of Y to an expectation of X that you know.

Respuesta :

If [tex]F_Y(y)[/tex] is the cumulative distribution function for [tex]Y[/tex], then

[tex]F_Y(y)=P(Y\le y)=P(e^X\le y)=P(X\le\ln y)=F_X(\ln y)[/tex]

Then the probability density function for [tex]Y[/tex] is [tex]f_Y(y)={F_Y}'(y)[/tex]:

[tex]f_Y(y)=\dfrac{\mathrm d}{\mathrm dy}F_X(\ln y)=\dfrac1yf_X(\ln y)=\begin{cases}\frac1{y\sqrt{2\pi}}e^{-\frac12(\ln y)^2}&\text{for }y>0\\0&\text{otherwise}\end{cases}[/tex]

The [tex]n[/tex]th moment of [tex]Y[/tex] is

[tex]E[Y^n]=\displaystyle\int_{-\infty}^\infty y^nf_Y(y)\,\mathrm dy=\frac1{\sqrt{2\pi}}\int_0^\infty y^{n-1}e^{-\frac12(\ln y)^2}\,\mathrm dy[/tex]

Let [tex]u=\ln y[/tex], so that [tex]\mathrm du=\frac{\mathrm dy}y[/tex] and [tex]y^n=e^{nu}[/tex]:

[tex]E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu}e^{-\frac12u^2}\,\mathrm du=\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{nu-\frac12u^2}\,\mathrm du[/tex]

Complete the square in the exponent:

[tex]nu-\dfrac12u^2=-\dfrac12(u^2-2nu+n^2-n^2)=\dfrac12n^2-\dfrac12(u-n)^2[/tex]

[tex]E[Y^n]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{\frac12(n^2-(u-n)^2)}\,\mathrm du=\frac{e^{\frac12n^2}}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du[/tex]

But [tex]\frac1{\sqrt{2\pi}}e^{-\frac12(u-n)^2}[/tex] is exactly the PDF of a normal distribution with mean [tex]n[/tex] and variance 1; in other words, the 0th moment of a random variable [tex]U\sim N(n,1)[/tex]:

[tex]E[U^0]=\displaystyle\frac1{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac12(u-n)^2}\,\mathrm du=1[/tex]

so we end up with

[tex]E[Y^n]=e^{\frac12n^2}[/tex]