Find the mass m, the moment My, and the x-coordinate x of the center of mass of the uniform flat plate of density rho = 1 bounded by the curve y = 1 x2 + 6x + 13 , the line x = 2, and the x and y axes.

Respuesta :

Answer:

mass, m=0.4525

moment, M = 0.4222

x-coordinate = 0.9330

Explanation:

lets write out the useful formulas.[tex]\\[/tex]

the [tex]mass, m = \int\limits \,\int\limits {p} \,  dA[/tex] [tex]\\[/tex]

where [tex  dA=dxdy[/tex]  [tex]\\[/tex]

hence we can express the mass inters of x and y axes  [tex]\\[/tex]

[tex]mass,m=\int\limits \int\limits {p} \,dx \, dy[/tex] [tex]\\[/tex]

 Next we find expression for the moment [tex]\\[/tex]

[tex]moment ,M_{y}=mx = \int\limits \int\limits x{p} \,dx \,dy[/tex]

[tex]\\[/tex]

lastly, the x-coordinate

[tex]\\[/tex]

[tex]x=\frac{moment,M_{y} }{mass,m}[/tex]

[tex]\\[/tex]

Now from the question we were given the expression for y as

[tex]\\[/tex]

[tex]y= \frac{1}{\sqrt{x^{2}+6x+13 }}[/tex]

[tex]\\[/tex]

and the points of x which are

[tex]\\[/tex]

x=2 from 0. [tex]\\[/tex]

also the densit, p=1

from the expression for the mass [tex]\\[/tex]

[tex]mass,m=\int\limits \int\limits {p} \,dx \,dy[/tex] [tex]\\[/tex]

[tex]mass, m =\int\limits^2_0 \int\limits^y_0 {1} \,dx  \,dy \\[/tex]

[tex][tex]mass.m=\int\limits^2_0 \, dx[y]^{y} _{0} \\[/tex] [\int\limits^y_0  \,dy ]\\[/tex]

[tex]mass.m=\int\limits^2_0 \,ydx[/tex] [tex]\\[/tex]

substitute the value of y [tex]\\[/tex]

[tex]mass,m=\int\limits^2_0 \,\frac{1}{\sqrt{x^{2}+6x+13}} dx\\[/tex]

we can manipulate the expression under the square-root to something familiar under integration [tex]\\[/tex]

[tex](x^{2}+6x)+9+4 \\(x+3)^{2}+4\\[/tex]

Now we can easily integrate the expression using the integral of the inverse of an hyperbolic function. the identity is shown below [tex]\\[/tex]

[tex]\int\limits^a_b {\frac{1}{\sqrt{(u+a)^{2}+c^{2}  } } } \, dx = sinh^{-1} \frac{u+a}{c} +k\\k = constant[/tex]

Hence

[tex]mass,m=[sinh^{-1} (\frac{x+3}{2} )]^{2} _{0} \\[/tex]

[tex]mass,m=[sinh^{-1} (\frac{2+3}{2} )]-[sinh^{-1} (\frac{0+3}{2} )]\\[/tex]

Note: [tex]sinh^{-1}x \neq  (sinhx)^{-1}=\frac{1}{sinhx} \\[/tex]

Rather we use the expansion [tex]sinh^{-1}x=ln(x+\sqrt{1+x^{2} })\\[/tex]

[tex]mass,m=1.6473-1.19483\\mass,m=0.4525\\[/tex]

Next we solve for the moment about the y-axis

from the expression for moment ,we have

[tex]moment ,M_{y} =mx  = \int\limits \int\limits x{p} \, dx \, dy[/tex]

[tex]\\[/tex]

By following the same method of integral for the expansion process like we did above, we arrive at

[tex]moment ,M_{y} =\int\limits^2_0 {\frac{x}{\sqrt{(x+3)^{2} +4 } } } \, dx\\[/tex]

integrating at the definite points,we have

[tex]moment ,M_{y}=[\sqrt{(2+3)^{2}+4} -3sinh^{-1} (\frac{2+3}{2} )] - [\sqrt{(0+3)^{2}+4} -sinh^{-1} (\frac{0+3}{2} )]\\[/tex]

[tex]moment ,M_{y} =0.4433-0.02106\\moment ,M_{y} =0.4222\\[/tex]

Finally we solve for the x-coordinate, using the ratio of the moment to the mass we obtained earlier

[tex]x=\frac{moment}{mass}\\ x=\frac{0.4222}{0.4525} \\x=0.9330\\[/tex]