A block of unknown mass is attached to a spring with a spring constant of 7.00 N/m 2 and undergoes simple harmonic motion with an amplitude of 12.5 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 32.0 cm/s (a )Calculate the mass of the block.
( b)Calculate the period of the motion.
(c ) Calculate the maximum acceleration of the block.

Respuesta :

Answers:

a) [tex]0.80 kg[/tex]

b) [tex]2.12 s[/tex]

c) [tex]1.093 m/s^{2}[/tex]

Explanation:

We have the following data:

[tex]k=7 N/m[/tex] is the spring constant

[tex]A=12.5 cm \frac{1 m}{100 cm}=0.125 m[/tex] is the amplitude of oscillation

[tex]V=32 cm/s=0.32 m/s[/tex] is the velocity of the block when [tex]x=\frac{A}{2}=0.0625 m[/tex]

Now let's begin with the answers:

a) Mass of the block

We can solve this by the conservation of energy principle:

[tex]U_{o}+K_{o}=U_{f}+K_{f}[/tex] (1)

Where:

[tex]U_{o}=k\frac{A^{2}}{2}[/tex] is the initial potential energy

[tex]K_{o}=0[/tex]  is the initial kinetic energy

[tex]U_{f}=k\frac{x^{2}}{2}[/tex] is the final potential energy

[tex]K_{f}=\frac{1}{2} m V^{2}[/tex] is the final kinetic energy

Then:

[tex]k\frac{A^{2}}{2}=k\frac{x^{2}}{2}+\frac{1}{2} m V^{2}[/tex] (2)

Isolating [tex]m[/tex]:

[tex]m=\frac{k(A^{2}-x^{2})}{V^{2}}[/tex] (3)

[tex]m=\frac{7 N/m((0.125 m)^{2}-(0.0625 m)^{2})}{(0.32 m/s)^{2}}[/tex] (4)

[tex]m=0.80 kg[/tex] (5)

b) Period

The period [tex]T[/tex] is given by:

[tex]T=2 \pi \sqrt{\frac{m}{k}}[/tex] (6)

Substituting (5) in (6):

[tex]T=2 \pi \sqrt{\frac{0.80 kg}{7 N/m}}[/tex] (7)

[tex]T=2.12 s[/tex] (8)

c) Maximum acceleration

The maximum acceleration [tex]a_{max}[/tex] is when the force is maximum [tex]F_{max}[/tex], as well :

[tex]F_{max}=m.a_{max}=k.x_{max}[/tex] (9)

Being [tex]x_{max}=A[/tex]

Hence:

[tex]m.a_{max}=kA[/tex] (10)

Finding [tex]a_{max}[/tex]:

[tex]a_{max}=\frac{kA}{m}[/tex] (11)

[tex]a_{max}=\frac{(7 N/m)(0.125 m)}{0.80 kg}[/tex] (12)

Finally:

[tex]a_{max}=1.093 m/s^{2}[/tex]