Respuesta :

Answer:

A. [tex]9\cdot 9^{x-1}[/tex]

C. [tex](\frac{36}{4})^x[/tex]

Step-by-step explanation:

Given:

The given expression is [tex]9^x[/tex]

Let us simplify each choice and check whether they simplify to [tex]9^x[/tex] or not.

Choice A:

[tex]9\cdot 9^{x-1}[/tex]

We use the law of indices: [tex]a^m\cdot a^n=a^{m+n}[/tex]

Therefore, [tex]9^1\cdot 9^{x-1}=9^{1+x-1}=9^x=9^x(True)[/tex]

Choice B:

[tex]9\cdot 9^{x+1}[/tex]

We use the law of indices: [tex]a^m\cdot a^n=a^{m+n}[/tex]

Therefore, [tex]9^1\cdot 9^{x+1}=9^{1+x+1}=9^{x+2}\ne 9^x(False)[/tex]

Choice C:

[tex](\frac{36}{4})^{x}[/tex]

We simplify the fraction inside the parenthesis. So,

[tex](\frac{36}{4})^{x}=(9)^x=9^x(True)[/tex]

Choice D:

[tex]x^5\ne 9^x[/tex]

Choice E:

[tex]36\ne 9^x[/tex]

Therefore, the correct options are A and C.