A triangle has side lengths 6, 7, and B, and the angle between the sides of lengths 6 and 7 measures 60 degress. If A si the area of the triangle and B is the integer closet B, find the value of A/b.

Respuesta :

The value of A/b is 2.60

Step-by-step explanation:

We have cosine formula

           c² = a² + b² - 2ab cosC

Here

          c = B

          a = 6

          b = 7

          C = 60°

Substituting

          B² = 6² + 7² - 2 x 6 x 7 cos60

          B² = 43

          B = 6.56

           b = 7 closest integer to B.

Given that A is area of triangle

          A=0.5absinC

          A = 0.5 x 6 x 7 x sin60 = 18.19

We need to find [tex]\frac{A}{b}[/tex]

        [tex]\frac{A}{b}=\frac{18.19}{7}=2.60[/tex]

The value of A/b is 2.60