A mass weighing 16 pounds stretches a spring (8/3) feet. The mass is initially released from rest from a point 2 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion if the mass is driven by an external force equal to f(t)=10cos(3t).

Respuesta :

Answer with Step-by-step explanation:

Let a mass weighing 16 pounds stretches a spring [tex]\frac{8}{3}[/tex] feet.

Mass=[tex]m=\frac{W}{g}[/tex]

Mass=[tex]m=\frac{16}{32}[/tex]

[tex]g=32 ft/s^2[/tex]

Mass,m=[tex]\frac{1}{2}[/tex] Slug

By hook's law

[tex]w=kx[/tex]

[tex]16=\frac{8}{3} k[/tex]

[tex]k=\frac{16\times 3}{8}=6 lb/ft[/tex]

[tex]f(t)=10cos(3t)[/tex]

A damping force is numerically equal to 1/2 the instantaneous velocity

[tex]\beta=\frac{1}{2}[/tex]

Equation of motion :

[tex]m\frac{d^2x}{dt^2}=-kx-\beta \frac{dx}{dt}+f(t)[/tex]

Using this equation

[tex]\frac{1}{2}\frac{d^2x}{dt^2}=-6x-\frac{1}{2}\frac{dx}{dt}+10cos(3t)[/tex]

[tex]\frac{1}{2}\frac{d^2x}{dt^2}+\frac{1}{2}\frac{dx}{dt}+6x=10cos(3t)[/tex]

[tex]\frac{d^2x}{dt^2}+\frac{dx}{dt}+12x=20cos(3t)[/tex]

Auxillary equation

[tex]m^2+m+12=0[/tex]

[tex]m=\frac{-1\pm\sqrt{1-4(1)(12)}}{2}[/tex]

[tex]m=\frac{-1\pmi\sqrt{47}}{2}[/tex]

[tex]m_1=\frac{-1+i\sqrt{47}}{2}[/tex]

[tex]m_2=\frac{-1-i\sqrt{47}}{2}[/tex]

Complementary function

[tex]e^{\frac{-t}{2}}(c_1cos\frac{\sqrt{47}}{2}+c_2sin\frac{\sqrt{47}}{2})[/tex]

To find the particular solution using undetermined coefficient method

[tex]x_p(t)=Acos(3t)+Bsin(3t)[/tex]

[tex]x'_p(t)=-3Asin(3t)+3Bcos(3t)[/tex]

[tex]x''_p(t)=-9Acos(3t)-9sin(3t)[/tex]

This solution satisfied the equation therefore, substitute the values in the differential equation

[tex]-9Acos(3t)-9Bsin(3t)-3Asin(3t)+3Bcos(3t)+12(Acos(3t)+Bsin(3t))=20cos(3t)[/tex]

[tex](3B+3A)cos(3t)+(3B-3A)sin(3t)=20cso(3t)[/tex]

Comparing on both sides

[tex]3B+3A=20[/tex]

[tex]3B-3A=0[/tex]

Adding both equation then, we get

[tex]6B=20[/tex]

[tex]B=\frac{20}{6}=\frac{10}{3}[/tex]

Substitute the value of B in any equation

[tex]3A+10=20[/tex]

[tex]3A=20-10=10[/tex]

[tex]A=\frac{10}{3}[/tex]

Particular solution, [tex]x_p(t)=\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)[/tex]

Now, the general solution

[tex]x(t)=e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)[/tex]

From initial condition

x(0)=2 ft

x'(0)=0

Substitute the values t=0 and x(0)=2

[tex]2=c_1+\frac{10}{3}[/tex]

[tex]2-\frac{10}{3}=c_1[/tex]

[tex]c_1=\frac{-4}{3}[/tex]

[tex]x'(t)=-\frac{1}{2}e^{-\frac{t}{2}}(c_1cos(\frac{\sqrt{47}t}{2})+c_2sin(\frac{\sqrt{47}t}{2})+e^{-\frac{t}{2}}(-c_1\frac{\sqrt{47}}{2}sin(\frac{\sqrt{47}t}{2})+\frac{\sqrt{47}}{2}c_2cos(\frac{\sqrt{47}t}{2})-10sin(3t)+10cos(3t)[/tex]

Substitute x'(0)=0

[tex]0=-\frac{1}{2}\times c_1+10+\frac{\sqrt{47}}{2}c_2[/tex]

[tex]\frac{\sqrt{47}}{2}c_2-\frac{1}{2}\times \frac{-4}{3}+10=0[/tex]

[tex]\frac{\sqrt{47}}{2}c_2=-\frac{2}{3}-10=-\frac{32}{3}[/tex]

[tex]c_2==-\frac{64}{3\sqrt{47}}[/tex]

Substitute the values then we get

[tex]x(t)=e^{-\frac{t}{2}}(-\frac{4}{3}cos(\frac{\sqrt{47}t}{2})-\frac{64}{3\sqrt{47}}sin(\frac{\sqrt{47}t}{2})+\frac{10}{3}cos(3t)+\frac{10}{3}sin(3t)[/tex]