Respuesta :

The rationalized form is:

[tex]\frac{(\sqrt{x}-5)(\sqrt{x}+2)}{x - 4}[/tex]

Step-by-step explanation:

Given

[tex]\frac{\sqrt{x}-5}{\sqrt{x}-2}[/tex]

To rationalize a denominator, we multiply the numerator and denominator of a fraction with conjugate of the denominator

The conjugate of denominator is:

[tex]\sqrt{x}+2[/tex]

Multiplying with conjugate

[tex]\frac{\sqrt{x}-5}{\sqrt{x}-2} * \frac{\sqrt{x}+2}{\sqrt{x}+2}\\=\frac{(\sqrt{x}-5)(\sqrt{x}+2)}{(\sqrt{x})^2 - (2)^2}\\=\frac{(\sqrt{x}-5)(\sqrt{x}+2)}{x - 4}[/tex]

Hence,

The rationalized form is:

[tex]\frac{(\sqrt{x}-5)(\sqrt{x}+2)}{x - 4}[/tex]

Keywords: Conjugate, rationalization

Learn more about rationalization at:

  • brainly.com/question/10941043
  • brainly.com/question/10978510

#LearnwithBrainly