Answer:
14.36 N
Explanation:
[tex]T_{1}[/tex] = Tension in string 1
[tex]T_{2}[/tex] = Tension in string 2
[tex]m_b[/tex] = mass of the bar = 2.7 kg
[tex]W_b[/tex] = weight of the bar
weight of the bar is given as
[tex]W_b = m_{b} g = (2.7) (9.8) = 26.46[/tex]N
[tex]m_m[/tex] = mass of the bar = 1.35 kg
[tex]W_m[/tex] = weight of the monkey
weight of the monkey is given as
[tex]W_m = m_{m} g = (1.35) (9.8) = 13.23[/tex]N
Using equilibrium of torque about left end
[tex]W_{m} (AB) + W_{b} (AB) = T_{2} (AC)\\W_{m} (AB) + W_{b} (AB) = T_{2} (AD - CD)\\(13.23) (1.5) + (26.46)(1.5) = T_{2} (3 - 0.65)\\\\T_{2} = 25.33[/tex] N
Using equilibrium of force in vertical direction
[tex]T_{1} + T_{2} = W_{b} + W_{m}\\T_{1} + 25.33 = 26.46 + 13.23\\T_{1} = 14.36[/tex] N