Answer:
Explanation:
[tex]\frac{n_a}{S}+\frac{n_b}{S'}=\frac{n_b-n_a}{R}[/tex]
where [tex]n_a[/tex] and [tex]n_b[/tex] are refractive indexes of the two surfaces
From the given data [tex]n_a=1.333[/tex] and [tex]n_b=1.40[/tex]. The distance from the cornea to the retina in this model of the eye is [tex]2.60cm[/tex], [tex]R=0.71cm[/tex]. Substituting these values:
[tex]\frac{1.333}{S}+\frac{1.40}{2.6}=\frac{1.40-1.33}{0.71}\\\\=\frac{1.333}{S}=\frac{1.40-1.33}{0.71}-\frac{1.40}{2.6}=-3.02cm[/tex]
This means that the object for the cornea must be 3.02cm behind the cornea. Now assume that the glasses are 2.00cm in front of the eye, so then:
[tex]S'=2.00cm+S=5.02cm[/tex]
From thin lens equation:
[tex]\frac{1}{S}+\frac{1}{S'}=\frac{1}{f'_1}\\\\=\frac{1}{infinity}+\frac{1}{5.02}=\frac{1}{f'_1}=f'_1=5.00cm[/tex]
This is the focal length in water but to get that of air, we use :
[tex]f_1=f'_1[\frac{n-n_{liq}}{n_{liq}(n-1)}]\\\\=5.02[\frac{1.62-1.333}{1.333(1.62-1)}]=1.74cm[/tex]
A converging lens is needed.