A 2.10 cm × 2.10 cm square loop of wire with resistance 1.30×10−2 Ω has one edge parallel to a long straight wire. The near edge of the loop is 1.10 cm from the wire. The current in the wire is increasing at the rate of 130 A/s .

Respuesta :

Answer:

[tex]I_{l} =44.84 \mu A[/tex]

Explanation:

given,

side of square loop = a = 2.10 cm

Resistance of the wire =  1.30×10⁻² Ω  

Length of the loop = c = 1.10 cm

rate of increasing current = 130 A/s

[tex]\phi = \dfrac{\mu_0Ib}{2\pi}(ln(\dfrac{c+a}{c}))[/tex]

[tex]\dfrac{d\phi}{dt}= \dfrac{\mu_0b}{2\pi}\dfrac{dI}{dt}(ln(\dfrac{c+a}{c}))[/tex]

[tex]I_{l} = \dfrac{V}{R}[/tex]

[tex]I_{l} = \dfrac{1}{R}\dfrac{d\phi}{dt}[/tex]

[tex]I_{l} = \dfrac{1}{R}\dfrac{\mu_0b}{2\pi}\dfrac{dI}{dt}(ln(\dfrac{c+a}{c}))[/tex]

[tex]I_{l} = \dfrac{1}{1.3 \times 10^{-2}}\dfrac{4\pi\times 10^{-7}\times 0.021}{2\pi}\times 130\times (ln(\dfrac{0.011+0.021}{0.011}))[/tex]

[tex]I_{l} =44.84 \times 10^{-6}\A[/tex]

[tex]I_{l} =44.84 \mu A[/tex]