Respuesta :
Answer:
(a) y = 9/4x -1/4
(b) (-2, -2), (-2, 2)
(c) see below
Step-by-step explanation:
(a) The derivative can be found from ...
2y·y' = 3x² +6x
At (x, y) = (1, 2), this is ...
4y' = 9
y' = 9/4
so the equation of the tangent is ...
y = (9/4)(x -1) +2
y = (9/4)x -1/4
__
(b) At y' = 0, we have ...
0 = 3x² +6x = 3x(x +2)
This says y' = 0 at x=0 or x=-2. (x = 0 is an extraneous solution.)
At x = -2, we have ...
y² = (-2)³ +3(-2)² = -8+12 = 4
y = ±2
So, the horizontal tangent points are (x, y) = (-2, ±2).

A tangent line touches a curve at one point without crossing over the curve.
- The equation of the tangent line is: [tex]\mathbf{y = \frac 94x - \frac {1}4}[/tex]
- The horizontal tangent points are [tex]\mathbf{(x, y) = (-2, \±2)}[/tex]
The equation is given as:
[tex]\mathbf{y^2 = x^3 + 3x^2}[/tex]
(a) Equation of the tangent line
Differentiate both sides of [tex]\mathbf{y^2 = x^3 + 3x^2}[/tex]
[tex]\mathbf{2y \cdot y' = 3x^2 + 6x}[/tex]
Make y' the subject
[tex]\mathbf{y' = \frac{3x^2 + 6x}{2y}}[/tex]
From the question, the points are given as:
[tex]\mathbf{(x,y) = (1,2)}[/tex]
Substitute these values in [tex]\mathbf{y' = \frac{3x^2 + 6x}{2y}}[/tex]
[tex]\mathbf{y' = \frac{3 \times 1^2 + 6 \times 1}{2 \times 2}}[/tex]
[tex]\mathbf{y' = \frac{3 + 6}{4}}[/tex]
[tex]\mathbf{y' = \frac{9}{4}}[/tex]
The equation of a tangent line is:
[tex]\mathbf{y = m(x - x_1) + y_1}[/tex]
Where:
[tex]\mathbf{m = y' = \frac{9}{4}}[/tex]
[tex]\mathbf{(x_1,y_1) = (1,2)}[/tex]
So, we have:
[tex]\mathbf{y = \frac 94(x - 1) + 2}[/tex]
Open bracket
[tex]\mathbf{y = \frac 94x - \frac 94 + 2}[/tex]
Take LCM
[tex]\mathbf{y = \frac 94x + \frac {-9 + 8}4}[/tex]
[tex]\mathbf{y = \frac 94x + \frac {-1}4}[/tex]
[tex]\mathbf{y = \frac 94x - \frac {1}4}[/tex]
Hence, the equation of the tangent line is: [tex]\mathbf{y = \frac 94x - \frac {1}4}[/tex]
(b) The points where the curve has horizontal tangents
In (a), we have:
[tex]\mathbf{2y \cdot y' = 3x^2 + 6x}[/tex]
Set y' to 0
[tex]\mathbf{2y \cdot 0 = 3x^2 + 6x}[/tex]
[tex]\mathbf{0 = 3x^2 + 6x}[/tex]
Expand
[tex]\mathbf{0 = 3x(x + 2)}[/tex]
Solve for x
[tex]\mathbf{3x = 0 \ or\ x + 2 = 0}[/tex]
[tex]\mathbf{x = 0 \ or\ x = -2}[/tex]
When x = 0,
[tex]\mathbf{y^2 = x^3 + 3x^2}[/tex]
[tex]\mathbf{y^2 = 0^3 + 3 \times 0^2}[/tex]
[tex]\mathbf{y = 0}[/tex]
When x = -2
[tex]\mathbf{y^2 = (-2)^3 + 3 \times (-2)^2}[/tex]
[tex]\mathbf{y^2 = 4}\\[/tex]
Take square roots
[tex]\mathbf{y = \pm2 }[/tex]
Hence, the horizontal tangent points are [tex]\mathbf{(x, y) = (-2, \±2)}[/tex]
(c) See attachment for graphs of (a) and (b)
Read more about tangent lines at:
https://brainly.com/question/23265136
