Respuesta :

simplifying [tex]\frac{\sqrt{4}}{\sqrt[3]{4}}[/tex] we get [tex]4^{\frac{1}{6}}[/tex]

Option B is correct.

Step-by-step explanation:

We need to simplify: [tex]\frac{\sqrt{4}}{\sqrt[3]{4}}[/tex]

Solving:

[tex]\frac{\sqrt{4}}{\sqrt[3]{4}}[/tex]

We know that √ = 1/2 and ∛=1/3

[tex]\frac{4^{\frac{1}{2}}}{4^{\frac{1}{3}}}[/tex]

Applying exponent rule: [tex]\frac{x^a}{x^b}=x^{a-b}[/tex]

[tex]=4^{\frac{1}{2}-\frac{1}{3}}\\=4^{\frac{3-2}{6}}\\=4^{\frac{1}{6}}[/tex]

So, simplifying [tex]\frac{\sqrt{4}}{\sqrt[3]{4}}[/tex] we get [tex]4^{\frac{1}{6}}[/tex]

Option B is correct.

Keywords: Solving Exponents  

Learn more about Solving Exponents at:

  • brainly.com/question/13174260
  • brainly.com/question/13174254
  • brainly.com/question/13174259

#learnwithBrainly