Respuesta :

Answer:[tex]FH=8\sqrt{51}[/tex]

Step-by-step explanation:

This is a special right triangle that has 30, 60 and 90 degress corners. Because it is a special triangle, it also has side length values which always consistent relationship with one another.

Side opposite the 30° angle: x

Side opposite the 90° angle: 2x

So, [tex]FG=8\sqrt{17}[/tex]

Then use Pythagorean theorem. [tex]c^{2} =a^{2} +b^{2}[/tex]

[tex](16\sqrt{17} )^{2} =FH^{2} +(8\sqrt{17} )^{2}[/tex]

[tex]FH^{2} =4352-1088[/tex]

[tex]FH=\sqrt{3264}[/tex]

[tex]FH=8\sqrt{51}[/tex]

Answer:

Step-by-step explanation:

[tex]\frac{FH}{16\sqrt{17} } =sin 60=\frac{\sqrt{3} }{2} \\FH=\frac{\sqrt{3} }{2} *16\sqrt{17} =8\sqrt{51}[/tex]