Respuesta :

Answer:

[tex]A=259.8\ cm^2[/tex]

Step-by-step explanation:

we know that

The figure represent a regular hexagon

A regular hexagon can be divided into six congruent equilateral triangles

Let

b ---> the length side of the regular hexagon

see the attached figure to better understand the problem

[tex]cos(30\°)=\frac{5\sqrt{3}}{b}[/tex]

Remember that

[tex]cos(30\°)=\frac{\sqrt{3}}{2}[/tex]

so

[tex]\frac{5\sqrt{3}}{b}=\frac{\sqrt{3}}{2}\\\\b=10\ cm[/tex]

Find the area of the regular hexagon

The area of a regular hexagon is equal to the area of six congruent equilateral triangles

[tex]A=6[\frac{1}{2}(b)(h)][/tex]

we have

[tex]b=10\ cm[/tex]

[tex]h=5\sqrt{3}\ cm[/tex]

substitute

[tex]A=6[\frac{1}{2}(10)(5\sqrt{3})][/tex]

[tex]A=150\sqrt{3}\ cm^2[/tex]

[tex]A=259.8\ cm^2[/tex]

Ver imagen calculista