Respuesta :

Answer:

[tex]t_1=5[/tex]

[tex]t_2=9[/tex]

[tex]t_3=13[/tex]

[tex]t_{n+1}-t_n=4[/tex]

Step-by-step explanation:

We have that:

[tex]t_n=4n+1[/tex]

When we substitute n=1, we get:

[tex]t_1=4*1+1=5[/tex]

When we substitute n=2 we get:

[tex]t_2=4*2+1=9[/tex]

When we substitute n=3, we get:

[tex]t_3=4*3+1=13[/tex]

When we substitute n=n+1, we get:

[tex]t_{n+1}=4*(n+1)+1=4n+5[/tex]

Now

[tex]t_{n+1}-t_n=4n+5-(4n+1)[/tex]

We expand and simplify to obtain:

[tex]t_{n+1}-t_n=4n+5-4n-1[/tex]

[tex]t_{n+1}-t_n=4[/tex]