To the nearest tenth, find the perimeter of triangle ABC with vertices A(3, 2), B(-2, 3), and C(2, 6)

14.2

B.
17.5

C.
18.2

D.
18.7

Find the midpoint between (-4, -2) and (-10, -4)

A.
(-16, -6)

B.
(-7, -3)

C.
(-3, -7)

D.
(3, 1)

Respuesta :

The correct option is A). 14.2

The correct option is B). (-7,-3)

Step-by-step explanation:

QA). The perimeter of triangle ABC with vertices A(3, 2), B(-2, 3), and C(2, 6)

Ans.

The distance between two points A(X1,Y1) and B(Y1,Y2) is

=[tex]\sqrt{(X1-X2)^{2}+(Y1-Y2)^{2}[/tex]

Now,

The distance between two points  A(3, 2) and B(-2, 3) is

=[tex]\sqrt{(X1-X2)^{2}+(Y1-Y2)^{2}[/tex]

=[tex]\sqrt{(3-(-2))^{2}+(2-3)^{2}[/tex]

=[tex]\sqrt{25 +1}[/tex]

=[tex]\sqrt{26}[/tex]

The distance between two points  B(-2, 3) and C(2, 6) is

=[tex]\sqrt{(X1-X2)^{2}+(Y1-Y2)^{2}[/tex]

=[tex]\sqrt{((-2)-(2))^{2}+(3-6)^{2}[/tex]

=[tex]\sqrt{16 +9}[/tex]

=[tex]\sqrt{25}[/tex]

=5

The distance between two points  A(3, 2) and C(2, 6) is

=[tex]\sqrt{(X1-X2)^{2}+(Y1-Y2)^{2}[/tex]

=[tex]\sqrt{((3)-(2))^{2}+(2-6)^{2}[/tex]

=[tex]\sqrt{1 +16}[/tex]

=[tex]\sqrt{17}[/tex]

.

The perimeter of Triangle ABC is AB+BC+AC

=[tex]\sqrt{26}[/tex]+5+[tex]\sqrt{17}[/tex]

=5.099+5+4.1231

=14.2221

The correct option is A). 14.2

QB). Find the midpoint between (-4, -2) and (-10, -4)

Ans.

The midpoint of two points A(X1,Y1) and B(Y1,Y2) is

=[tex](\frac{(X1+X2)}{2},\frac{(Y1+Y2)}{2})[/tex]

The midpoint of two points (-4, -2) and (-10, -4) IS

=[tex](\frac{(X1+X2)}{2},\frac{(Y1+Y2)}{2})[/tex]

=[tex](\frac{((-4)+(-10))}{2},\frac{((-2)+(-4))}{2})[/tex]

=[tex](\frac{(-14)}{2},\frac{(-6)}{2})[/tex]

=(-7,-3)

The correct option is B). (-7,-3)