Answer:
The answer is y = 80±[tex]\sqrt{61} i[/tex] and x = ± [tex]\sqrt{61} i[/tex]
Step-by-step explanation:
We need to solve this system of equations algebraically
y + x = 19 - [tex]x^{2}[/tex] ..............................................(1)
x+y = 80 ...............................................................................(2)
Substituting equation (2) in equation (1)
80 = 19 - [tex]x^{2}[/tex]
-61 = [tex]x^{2}[/tex]
x = ± [tex]\sqrt{61} i[/tex]
Where i is the imaginary
Then the value of y = 80±[tex]\sqrt{61} i[/tex]
This is the solution to this system of equations