Respuesta :

Answer:

The required domain is all real values of y, except y = 0 and [tex]y = \frac{b}{2}[/tex].

Step-by-step explanation:

The given expression is  

[tex]\frac{b^{2} - 4by}{2y^{2} - by} - \frac{4y}{b - 2y}[/tex]

Let, [tex] x = \frac{b^{2} - 4by}{2y^{2} - by} - \frac{4y}{b - 2y}[/tex]

Therefore, to find the domain of this function means to find those values of variable y for which the x-value exists.

It is clear that the denominator of the two terms in the expression must not be zero for x to exist.

So, [tex]{2y^{2} - by} \neq  0[/tex]

⇒ [tex]y(2y - b) \neq  0[/tex]

[tex]y \neq  0 , y \neq \frac{b}{2}[/tex]

Again, [tex]b - 2y \neq  0[/tex]

[tex]y \neq  \frac{b}{2}[/tex]

Therefore, the required domain is all real values of y, except y = 0 and [tex]y = \frac{b}{2}[/tex]. (Answer)