Respuesta :
Answer:
0, π/6, 5π/6, π
Step-by-step explanation:
cos² θ − sin² θ = 1 − sin θ, 0 ≤ θ < 2π
Use Pythagorean identity:
(1 − sin² θ) − sin² θ = 1 − sin θ
1 − 2sin² θ = 1 − sin θ
2sin² θ = sin θ
2sin² θ − sin θ = 0
sin θ (2 sin θ − 1) = 0
sin θ = 0
θ = 0 or π
2 sin θ − 1 = 0
sin θ = 1/2
θ = π/6 or 5π/6
Answer:
θ ∈ {0, π/6, 5π/6, π, 2π}
Step-by-step explanation:
Use the equivalent for cos² and solve the resulting quadratic in sin.
(1 -sin(θ)²) -sin(θ)² = 1 -sin(θ)
0 = 2sin(θ)² -sin(θ) . . . . . subtract the left side
0 = sin(θ)(2sin(θ) -1)
This has solutions ...
sin(θ) = 0 ⇒ θ = {0, π, 2π}
sin(θ) = 1/2 ⇒ θ = {π/6, 5π/6}
The solution set is ...
θ ∈ {0, π/6, 5π/6, π, 2π}
