Respuesta :

Answer:

a) 0.60 m

b) 2.5 m

Step-by-step explanation:

Use conservation of energy to find the speed at the end of the track.

KE = PE + KE

½ mv² = mgh + ½ mv²

½ v² = gh + ½ v²

½ (5.4 m/s)² = (9.8 m/s²) (0.40 m) + ½ v²

v = 4.62 m/s

a. Use projectile motion to find the maximum height.

Given:

v₀ = 4.62 m/s sin 48° = 3.43 m/s

v = 0 m/s

a = -9.8 m/s²

Find: Δy

v² = v₀² + 2aΔy

(0 m/s)² = (3.43 m/s)² + 2 (-9.8 m/s²) Δy

Δy = 0.60 m

b. Use projectile motion to find the time it takes to land.

Given:

Δy = -0.40 m

v₀ = 4.62 m/s sin 48° = 3.43 m/s

a = -9.8 m/s²

Find: t

Δy = v₀ t + ½ at²

-0.40 m = (3.43 m/s) t + ½ (-9.8 m/s²) t²

4.9t² − 3.43t − 0.40 = 0

t = [ 3.43 ± √((-3.43)² − 4(4.9)(-0.40)) ] / 2(4.9)

t = (3.43 ± 4.43) / 9.8

Since t > 0:

t = 0.802

Now find the horizontal distance traveled in that time.

Given:

v₀ = 4.62 m/s cos 48° = 3.09 m/s

a = 0 m/s²

t = 0.802 s

Find: Δx

Δx = v₀ t + ½ at²

Δx = (3.09 m/s) (0.802 s) + ½ (0 m/s²) (0.802 s)²

Δx = 2.5 m