Respuesta :

Answer:

[tex]a=\sqrt{c^2-b^2[/tex]

⇒ [tex]a=\sqrt{(c+b)(c-b)}[/tex]        [Factorized form]

Step-by-step explanation:

Given expression:

[tex]a^2+b^2=c^2[/tex]

We need to make [tex]a[/tex] the subject.

In order to do that we need to solve the expression for [tex]a[/tex] in terms of [tex]b[/tex] and [tex]c[/tex]

We have,

[tex]a^2+b^2=c^2[/tex]

Subtracting both sides by [tex]b^2[/tex]

[tex]a^2+b^2-b^2=c^2-b^2[/tex]

[tex]a^2=c^2-b^2[/tex]

Taking square root both sides in order to remove square of [tex]a[/tex]

[tex]\sqrt{a^2}=\sqrt{c^2-b^2}[/tex]

[tex]a=\sqrt{c^2-b^2[/tex]

The difference of squares can be factorized and written  as:

[tex]a=\sqrt{(c+b)(c-b)}[/tex]    [difference of squares [tex]x^2-y^2=(x+y)(x-y)[/tex] ]