Answer:
Option B [tex]\frac{1}{3}[/tex] is the constant of variation.
Step-by-step explanation:
Given direct variation points [tex](12,4)[/tex].
Lets assign [tex](x,y)[/tex] to [tex](12,4)[/tex].
And we know that in direct variation if one value increases other also increases or vice versa.
Where we can say that coordinate points can be shown as [tex]y=k(x)[/tex]
[tex]k[/tex] is the constant of variation or the constant of proportionality.
So plugging the values of [tex]y=4[/tex] and [tex]x=12[/tex].
[tex]y=k(x)[/tex]
Dividing both sides with [tex]x[/tex].
[tex]k=\frac{y}{x}=\frac{4}{12}=\frac{1}{3}[/tex]
So the constant of variation is [tex]\frac{1}{3}[/tex] and option B resembles the same.