If the point (12, 4) lies on the graph of a direct variation, what is the constant of variation?
A. 8
C. 3
B.1/3
D. 48

Respuesta :

Answer:

Option B [tex]\frac{1}{3}[/tex] is the constant of variation.

Step-by-step explanation:

Given direct variation points [tex](12,4)[/tex].

Lets assign [tex](x,y)[/tex] to [tex](12,4)[/tex].

And we know that in direct variation if one value increases other also increases or vice versa.

Where we can say that coordinate points can be shown as [tex]y=k(x)[/tex]

[tex]k[/tex] is the constant of variation or the constant of proportionality.

So plugging the values of [tex]y=4[/tex] and [tex]x=12[/tex].

[tex]y=k(x)[/tex]

Dividing both sides with [tex]x[/tex].

[tex]k=\frac{y}{x}=\frac{4}{12}=\frac{1}{3}[/tex]

So the constant of variation is [tex]\frac{1}{3}[/tex] and option B resembles the same.