Respuesta :

Answer :

The value of q for, the given quadratic equation is 40

Step-by-step explanation :

Given quadratic equation as :

x² - 14 x + q = 0

And  , Difference between the roots of equation is 6

Let A , B be the roots of the equation

So, A - B = 6

The roots of the quadratic equation  ax² + bx + c = 0 as can be find as :

x = [tex]\frac{-b\pm \sqrt{b^{2}-4\times a\times c}}{2\times a}[/tex]

x = [tex]\frac{14\pm \sqrt{(-14)^{2}-4\times 1\times q}}{2\times 1}[/tex]

or, x = [tex]\frac{-14\pm \sqrt{196-4 q}}{2}[/tex]

Or, x = [tex]\frac{-14\pm \sqrt{196-4 q}}{2}[/tex]

So , The roots are

A = [tex]-7 + \frac{\sqrt{196-4q}}{2}[/tex]

And B = [tex]-7 - \frac{\sqrt{196-4q}}{2}[/tex]

∵ The difference between the roots is 6

So, A - B = 6

Or, ( [tex]-7 + \frac{\sqrt{196-4q}}{2}[/tex] ) - (  [tex]-7 - \frac{\sqrt{196-4q}}{2}[/tex] ) = 6

Or, ( - 7 + 7 ) + 2 ( [tex]\sqrt{196-4q}[/tex] = 6

Or, 0 + 2 ( [tex]\sqrt{196-4q}[/tex] = 6

∴ 196 - 4 q = 36

or, 4 q = 196 - 36

or 4 q = 160

∴ q = [tex]\frac{160}{4}[/tex]

I.e q = 40

S0, The value of q = 40

Hence The value of q for, the given quadratic equation is 40 . Answer