Respuesta :

Answer:

[tex]f(x)=3.5x-9.5[/tex]

Step-by-step explanation:

Given:

The given function in terms of 'a' is given as:

[tex]f(2a-1)=7a-13[/tex]

In order to determine [tex]f(x)[/tex], we need to make [tex]2a-1[/tex] equal to 'x' and find the value of 'a'. Therefore,

[tex]2a-1=x\\2a=x+1\\a=\frac{x+1}{2}[/tex]

Now, plug in the value of 'a' on both sides, we get:

[tex]f(2\frac{x+1}{2}-1)=7\frac{(x+1)}{2}-13\\f(x+1-1)=3.5(x+1)-13\\f(x)=3.5x+3.5-13\\f(x)=3.5x-9.5[/tex]

Therefore, the expression for the function in terms of 'x' is:

[tex]f(x)=3.5x-9.5[/tex]

The required function f(x) is expressed as f(x)=3.5x-87.5

Given the function f(2a−1)=7a−13

To get f(x), we will equate x with 2a - 1 to find the value of x

x = 2a - 1

x + 1 = 2a

a = (x + 1)/2

Substitute a = (x + 1)/2 into the function as showb:

[tex]f(2(\frac{x+1}{2} )-1) = 7(\frac{x+1}{2}-13 )\\f(x)=7(\frac{x+1-26}{2} )\\f(x)=7(\frac{x-25}{2} )\\\f(x)=3.5(x-25)\\f(x)=3.5x-87.5[/tex]

Hence the required function f(x) is expressed as f(x)=3.5x-87.5

Learn more here: https://brainly.com/question/23207600