Respuesta :
Answer:
q=-1128/169
Step-by-step explanation:
x²n-14x+q=0 here a=1, b= -14, c=q
let the roots of the equation beα and β
then the sum of the roots= S= α+β= -b/a=-(-14)/1=14
α+β=14 ⇒β=14-α--------(i)
product of the roots=P= αβ= c/a= q/1=q------(ii)
since α-β=6--------(given)----(iiI)
put the values of β from equation i to equation iii
α-14α=6
-13α=6
α=-6/13
put the values of α and β in eq. (ii)
αβ=q=(-6/13)(14-(-6/13)
q=(-6/13)(182+6/13)
q=(-6/13)188/13
q=-1128/169
Answer:
The value of q is 40
Step-by-step explanation:
Let one root = a
other root = b
x²-14x+q = (x-a)(x-b)
= x²-bx-ax+ab
= x²-(a+b)x+ab
Comparing the
coefficient
a + b = 14 ----(1)
ab = q -----(2)
a - b = 6 ------(3)
(1)-(3)
2b = 8
b = 4
sub b=4 into(1)
a + 4 = 14
a = 10
sub a=10,b=4 into(2)
ab = q
q = 10×4
= 40