WILL GIVE BRAINLIEST!!!
The graph of g(x) is a transformation of the graph of f(x)=3^x .

Enter the equation for g(x) in the box.

WILL GIVE BRAINLIESTThe graph of gx is a transformation of the graph of fx3x Enter the equation for gx in the box class=

Respuesta :

[tex]\boxed{g(x)=3^{x-2}-1}[/tex]

Explanation:

We can write the graph of g(x) as:

[tex]g(x)=3^{x+c}+k[/tex]

Where:

[tex]c:Represents \ an \ horizontal \ shift \\ \\ k:Represents \ a \ vertical \ shift[/tex]

From the graph (2, 0) and (3, 2) are points that line on the graph, therefore:

[tex]For \ (2,0): \\ \\ 0=3^{2+c}+k \\ \\ k=-3^23^c \\ \\ \\ For \ (3,2): \\ \\ 2=3^{3+c}+k \\ \\ k=2-3^33^c[/tex]

Equating k:

[tex]-3^23^c=2-3^33^c \\ \\ Solving \ for \ c: \\ \\ 3^33^c-3^23^c=2 \\ \\ 3^c(3^3-3^2)=2 \\ \\ 3^c(18)=2 \\ \\ 3^c=\frac{1}{9} \\ \\ 3^c=\frac{1}{3^2} \\ \\ 3^c=3^{-2} \\ \\ So, \ by \ property: \\ \\ a^x=a^y \ then \ x=y \\ \\ \\ So: \\ \\ c=-2[/tex]

Solving for k:

[tex]k=-3^23^c \\ \\ k=-3^23^{-2} \\ \\ k=-3^{2-2} \\ \\ k=-3^{0} \\ \\ k=1[/tex]

Finally, our equation is:

[tex]\boxed{g(x)=3^{x-2}-1}[/tex]

Learn more:

Even functions: https://brainly.com/question/11309886

#LearnWithBrainly