Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis.
y = 5x2, y = 30x − 10x2

Respuesta :

Answer:

40π

Explanation:

First, find the limits (intersections).

5x² = 30x − 10x²

15x² − 30x = 0

x² − 2x = 0

x (x − 2) = 0

x = 0 or 2

Within this interval, 30x − 10x² is greater than 5x².

Dividing the volume into cylindrical shells, the volume of each shell is:

dV = 2π r h t

dV = 2π x (30x − 10x² − 5x²) dx

dV = 2π x (30x − 15x²) dx

dV = 30π (2x² − x³) dx

The total volume is the sum (integral):

V = ∫ dV

V = ∫₀² 30π (2x² − x³) dx

V = 30π ∫₀² (2x² − x³) dx

V = 30π (⅔ x³ − ¼ x⁴)|₀²

V = 30π (⅔ 8 − ¼ 16)

V = 30π (16/3 − 4)

V = 10π (16 − 12)

V = 40π

Following are the calculation to the  volume:

Given:

[tex]y = 5x^2\\\\ y = 30x - 10x^2[/tex]

To find:

Volume=?

Solution:

Equating the curves:

[tex]5x^2 = 30x - 10x^2\\\\15x^2 - 30x = 0\\\\x^2 - 2x = 0\\\\x (x - 2) = 0\\\\x = 0\ \ \ \ \ \ \ \ or\ \ \ \ \ \ \ \ \ x- 2=0\\\\x = 0\ \ \ \ \ \ \ \ or\ \ \ \ \ \ \ \ \ x= 2\\\\[/tex]

Volume generated by y-axis [tex]= \int_{a}^{b} 2\pi r h \ dx\\\\[/tex]

                                                  [tex]= \int^{2}_{0}\ 2 \pi x (30x - 10x^2 - 5x^2) \ dx\\\\= 2 \pi \int^{2}_{0} x (30x - 15x^2) \ dx\\\\= 30 \pi \int^{2}_{0} (2x^2 - x^3) dx\\\\= 30 \pi ( \frac{2x^3}{3} - \frac{x^4}{4})^{2}_{0}) \\\\= 30 \pi ( \frac{2(2)^3}{3} - \frac{(2)^4}{4}-0)] \\\\= 30 \pi [( \frac{2 \times 8}{3} - \frac{16}{4}-0] \\\\= 30 \pi [( \frac{16}{3} - \frac{16}{4}] \\\\= 30 \pi [( \frac{64-48}{12} - 4] \\\\= 30 \pi [( \frac{16}{12})] \\\\= 30 \pi [( \frac{4}{3})] \\\\= 30 \pi \times \frac{4}{3} \\\\= 40 \pi[/tex]

Therefore, the final volume is "[tex]40 \pi[/tex]".

Learn more about volume:

brainly.com/question/7595946

Ver imagen codiepienagoya