Answer:
On simplification, [tex]\frac{5}{8}x - 2y + \frac{3}{4}x -8y = (\frac{11}{8}) x - 10y[/tex]
Step-by-step explanation:
Here, the given expression is:
[tex]\frac{5}{8}x - 2y + \frac{3}{4}x -8y[/tex]
Now, we can perform operations only on LIKE TERMS,
So, in this expression, separate the like terms we get:
[tex]\frac{5}{8}x - 2y + \frac{3}{4}x -8y = \frac{5}{8}x + \frac{3}{4}x - 2y -8y\\= (\frac{5}{8} + \frac{3}{4})x -(2y + 8y) = (\frac{5 + 3(2)}{8}) x - (10y)\\= (\frac{11}{8}) x - 10y\\\implies \frac{5}{8}x - 2y + \frac{3}{4}x -8y = (\frac{11}{8}) x - 10y[/tex]
Hence, on simplification, [tex]\frac{5}{8}x - 2y + \frac{3}{4}x -8y = (\frac{11}{8}) x - 10y[/tex]