Respuesta :

Answer:

2

Step-by-step explanation:

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "2.8" was replaced by "(28/10)". 2 more similar replacement(s)

Step by step solution :

Step  1  :

           14

Simplify   ——

           5  

Equation at the end of step  1  :

   5  1    1   7    14

 (——+——) ÷ —)-——) ÷ ——

  10 18    6  18    5  

Step  2  :

            7

Simplify   ——

           18

Equation at the end of step  2  :

   5  1    1   7    14

 (——+——) ÷ —)-——) ÷ ——

  10 18    6  18    5  

Step  3  :

           1

Simplify   —

           6

Equation at the end of step  3  :

   5  1    1   7    14

 (——+——) ÷ —)-——) ÷ ——

  10 18    6  18    5  

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  6  as the denominator :

         1     1 • 6

    1 =  —  =  —————

         1       6  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

6 + 1     7

—————  =  —

  6       6

Equation at the end of step  4  :

   5  1    7  7    14

 (——+——) ÷ —-——) ÷ ——

  10 18    6 18    5  

Step  5  :

Calculating the Least Common Multiple :

5.1    Find the Least Common Multiple

     The left denominator is :       6  

     The right denominator is :       18  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 1 1

3 1 2 2

Product of all  

Prime Factors  6 18 18

     Least Common Multiple:

     18  

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 3

  Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      7 • 3

  ——————————————————  =   —————

        L.C.M              18  

  R. Mult. • R. Num.       7

  ——————————————————  =   ——

        L.C.M             18

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

7 • 3 - (7)     7

———————————  =  —

    18          9

Equation at the end of step  5  :

   5     1    7   14

 (—— +  ——) ÷ — ÷ ——

  10    18    9   5  

Step  6  :

        7      14

Divide  —  by  ——

        9      5  

6.1    Dividing fractions

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

7     14       7      5

—  ÷  ——   =   —  •  ——

9     5        9     14

Equation at the end of step  6  :

   5     1     5

 (—— +  ——) ÷ ——

  10    18    18

Step  7  :

            1

Simplify   ——

           18

Equation at the end of step  7  :

   5     1     5

 (—— +  ——) ÷ ——

  10    18    18

Step  8  :

           1

Simplify   —

           2

Equation at the end of step  8  :

  1     1     5

 (— +  ——) ÷ ——

  2    18    18

Step  9  :

Calculating the Least Common Multiple :

9.1    Find the Least Common Multiple

     The left denominator is :       2  

     The right denominator is :       18  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 1 1

3 0 2 2

Product of all  

Prime Factors  2 18 18

     Least Common Multiple:

     18  

Calculating Multipliers :

9.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 9

  Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

9.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.       9

  ——————————————————  =   ——

        L.C.M             18

  R. Mult. • R. Num.       1

  ——————————————————  =   ——

        L.C.M             18

Adding fractions that have a common denominator :

9.4       Adding up the two equivalent fractions

9 + 1     5

—————  =  —

 18       9

Equation at the end of step  9  :

 5    5

 — ÷ ——

 9   18

Step  10  :

        5       5

Divide  —  by  ——

        9      18

10.1    Dividing fractions

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

5      5       5     18

—  ÷  ——   =   —  •  ——

9     18       9     5  

Final result :

 2

Processing ends successfully